Home   About the Journal   中文界面
PLANETARY BOUNDARY LAYER HEIGHT MEASURED BY A WIND PROFILER BASED ON THE WAVELET TRANSFORM
  Revised:October 25, 2017
KeyWords:CWT  wind profiler  PBLH  detection
Fund:
Author NameAffiliationE-mail
AI Wei-hua 1. College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101 China; 2. Jiangsu Research Institute of Meteorlogical Science Nanjing 210008 China  
GE Shu-rui  geshurui@126.com 
WEI Hao   
HU Ming-bao   
Hits: 390
Download times: 
Abstract:
      Planetary boundary layer height (PBLH) is an important input parameter for any boundary layer study or model, either climate or atmospheric. The variation of the PBLH is also of great significance to the physical processes of numerical prediction, diagnosis of weather forecasting and monitoring urban pollutants. However, effective ways to monitor the PBLH continuously are lack. Wind profilers are commonly used in monitoring PBLH continuously because of its high temporal and spatial resolution, coupled with capability of continuous detection. In this paper, the covariance wavelet transform (CWT) is used to analyze the range-corrected signal-to-noise ratio (SNR) of the wind profiler to determine the PBLH, which is then compared with the results measured by the gradient method and the radiosonde. The conclusions are as follows: (1) The scaling parameter a and translation parameter b of the wavelet are critical in determination of the PBLH by applying the CWT as different values may get completely different results, which requires to select appropriate values in the calculation carefully. (2) Quality control is crucial in determining the PBLH because good quality control can help remove mutation points, which makes the determined PBLH more consistent with the actual situation. (3) In clear-air, the gradient method is not applicable if the boundary layer turbulence is inhomogeneous and the impact of noise is large for that it is easy to be impacted by the mutation of SNR caused by the atmosphere turbulence instability and other factors, which will cause large errors, while the CWT method as an improvement of the gradient method can determine the PBLH quite well. (4) Through quality control, the PBLHs determined by the CWT are consistent with those of radiosonde, and the correlation coefficient between them is 0.87.
DOI:10.16555/j.1006-8775.2017.04.005
View Full Text  View/Add Comment  Download reader
      Copyright:Journal of Tropical Meteorology Editorial Office
Address:6 Fu Jin Road Guangzhou   Postcode:510080   Tel:020-87675987   Fax:020-87675987
Technical support: Beijing E-Tiller Co.,Ltd.